
    g                         d dl Zd dlmZ d dlmZmZmZ dgZ G d de      Z	 G d de      Z
 G d d	e      Z G d
 de      Z G d d      Zy)    N)LinearOperator)kroneye	dia_arrayLaplacianNdc                        e Zd ZdZdej
                  d fd
Zd ZddZd Z	d Z
dd	Zd
 Zd Zd Zd Zd Zd Z xZS )r   ai"  
    The grid Laplacian in ``N`` dimensions and its eigenvalues/eigenvectors.

    Construct Laplacian on a uniform rectangular grid in `N` dimensions
    and output its eigenvalues and eigenvectors.
    The Laplacian ``L`` is square, negative definite, real symmetric array
    with signed integer entries and zeros otherwise.

    Parameters
    ----------
    grid_shape : tuple
        A tuple of integers of length ``N`` (corresponding to the dimension of
        the Lapacian), where each entry gives the size of that dimension. The
        Laplacian matrix is square of the size ``np.prod(grid_shape)``.
    boundary_conditions : {'neumann', 'dirichlet', 'periodic'}, optional
        The type of the boundary conditions on the boundaries of the grid.
        Valid values are ``'dirichlet'`` or ``'neumann'``(default) or
        ``'periodic'``.
    dtype : dtype
        Numerical type of the array. Default is ``np.int8``.

    Methods
    -------
    toarray()
        Construct a dense array from Laplacian data
    tosparse()
        Construct a sparse array from Laplacian data
    eigenvalues(m=None)
        Construct a 1D array of `m` largest (smallest in absolute value)
        eigenvalues of the Laplacian matrix in ascending order.
    eigenvectors(m=None):
        Construct the array with columns made of `m` eigenvectors (``float``)
        of the ``Nd`` Laplacian corresponding to the `m` ordered eigenvalues.

    .. versionadded:: 1.12.0

    Notes
    -----
    Compared to the MATLAB/Octave implementation [1] of 1-, 2-, and 3-D
    Laplacian, this code allows the arbitrary N-D case and the matrix-free
    callable option, but is currently limited to pure Dirichlet, Neumann or
    Periodic boundary conditions only.

    The Laplacian matrix of a graph (`scipy.sparse.csgraph.laplacian`) of a
    rectangular grid corresponds to the negative Laplacian with the Neumann
    conditions, i.e., ``boundary_conditions = 'neumann'``.

    All eigenvalues and eigenvectors of the discrete Laplacian operator for
    an ``N``-dimensional  regular grid of shape `grid_shape` with the grid
    step size ``h=1`` are analytically known [2].

    References
    ----------
    .. [1] https://github.com/lobpcg/blopex/blob/master/blopex_tools/matlab/laplacian/laplacian.m
    .. [2] "Eigenvalues and eigenvectors of the second derivative", Wikipedia
           https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors_of_the_second_derivative

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.sparse.linalg import LaplacianNd
    >>> from scipy.sparse import diags, csgraph
    >>> from scipy.linalg import eigvalsh

    The one-dimensional Laplacian demonstrated below for pure Neumann boundary
    conditions on a regular grid with ``n=6`` grid points is exactly the
    negative graph Laplacian for the undirected linear graph with ``n``
    vertices using the sparse adjacency matrix ``G`` represented by the
    famous tri-diagonal matrix:

    >>> n = 6
    >>> G = diags(np.ones(n - 1), 1, format='csr')
    >>> Lf = csgraph.laplacian(G, symmetrized=True, form='function')
    >>> grid_shape = (n, )
    >>> lap = LaplacianNd(grid_shape, boundary_conditions='neumann')
    >>> np.array_equal(lap.matmat(np.eye(n)), -Lf(np.eye(n)))
    True

    Since all matrix entries of the Laplacian are integers, ``'int8'`` is
    the default dtype for storing matrix representations.

    >>> lap.tosparse()
    <DIAgonal sparse array of dtype 'int8'
        with 16 stored elements (3 diagonals) and shape (6, 6)>
    >>> lap.toarray()
    array([[-1,  1,  0,  0,  0,  0],
           [ 1, -2,  1,  0,  0,  0],
           [ 0,  1, -2,  1,  0,  0],
           [ 0,  0,  1, -2,  1,  0],
           [ 0,  0,  0,  1, -2,  1],
           [ 0,  0,  0,  0,  1, -1]], dtype=int8)
    >>> np.array_equal(lap.matmat(np.eye(n)), lap.toarray())
    True
    >>> np.array_equal(lap.tosparse().toarray(), lap.toarray())
    True

    Any number of extreme eigenvalues and/or eigenvectors can be computed.
    
    >>> lap = LaplacianNd(grid_shape, boundary_conditions='periodic')
    >>> lap.eigenvalues()
    array([-4., -3., -3., -1., -1.,  0.])
    >>> lap.eigenvalues()[-2:]
    array([-1.,  0.])
    >>> lap.eigenvalues(2)
    array([-1.,  0.])
    >>> lap.eigenvectors(1)
    array([[0.40824829],
           [0.40824829],
           [0.40824829],
           [0.40824829],
           [0.40824829],
           [0.40824829]])
    >>> lap.eigenvectors(2)
    array([[ 0.5       ,  0.40824829],
           [ 0.        ,  0.40824829],
           [-0.5       ,  0.40824829],
           [-0.5       ,  0.40824829],
           [ 0.        ,  0.40824829],
           [ 0.5       ,  0.40824829]])
    >>> lap.eigenvectors()
    array([[ 0.40824829,  0.28867513,  0.28867513,  0.5       ,  0.5       ,
             0.40824829],
           [-0.40824829, -0.57735027, -0.57735027,  0.        ,  0.        ,
             0.40824829],
           [ 0.40824829,  0.28867513,  0.28867513, -0.5       , -0.5       ,
             0.40824829],
           [-0.40824829,  0.28867513,  0.28867513, -0.5       , -0.5       ,
             0.40824829],
           [ 0.40824829, -0.57735027, -0.57735027,  0.        ,  0.        ,
             0.40824829],
           [-0.40824829,  0.28867513,  0.28867513,  0.5       ,  0.5       ,
             0.40824829]])

    The two-dimensional Laplacian is illustrated on a regular grid with
    ``grid_shape = (2, 3)`` points in each dimension.

    >>> grid_shape = (2, 3)
    >>> n = np.prod(grid_shape)

    Numeration of grid points is as follows:

    >>> np.arange(n).reshape(grid_shape + (-1,))
    array([[[0],
            [1],
            [2]],
    <BLANKLINE>
           [[3],
            [4],
            [5]]])

    Each of the boundary conditions ``'dirichlet'``, ``'periodic'``, and
    ``'neumann'`` is illustrated separately; with ``'dirichlet'``

    >>> lap = LaplacianNd(grid_shape, boundary_conditions='dirichlet')
    >>> lap.tosparse()
    <Compressed Sparse Row sparse array of dtype 'int8'
        with 20 stored elements and shape (6, 6)>
    >>> lap.toarray()
    array([[-4,  1,  0,  1,  0,  0],
           [ 1, -4,  1,  0,  1,  0],
           [ 0,  1, -4,  0,  0,  1],
           [ 1,  0,  0, -4,  1,  0],
           [ 0,  1,  0,  1, -4,  1],
           [ 0,  0,  1,  0,  1, -4]], dtype=int8)
    >>> np.array_equal(lap.matmat(np.eye(n)), lap.toarray())
    True
    >>> np.array_equal(lap.tosparse().toarray(), lap.toarray())
    True
    >>> lap.eigenvalues()
    array([-6.41421356, -5.        , -4.41421356, -3.58578644, -3.        ,
           -1.58578644])
    >>> eigvals = eigvalsh(lap.toarray().astype(np.float64))
    >>> np.allclose(lap.eigenvalues(), eigvals)
    True
    >>> np.allclose(lap.toarray() @ lap.eigenvectors(),
    ...             lap.eigenvectors() @ np.diag(lap.eigenvalues()))
    True

    with ``'periodic'``

    >>> lap = LaplacianNd(grid_shape, boundary_conditions='periodic')
    >>> lap.tosparse()
    <Compressed Sparse Row sparse array of dtype 'int8'
        with 24 stored elements and shape (6, 6)>
    >>> lap.toarray()
        array([[-4,  1,  1,  2,  0,  0],
               [ 1, -4,  1,  0,  2,  0],
               [ 1,  1, -4,  0,  0,  2],
               [ 2,  0,  0, -4,  1,  1],
               [ 0,  2,  0,  1, -4,  1],
               [ 0,  0,  2,  1,  1, -4]], dtype=int8)
    >>> np.array_equal(lap.matmat(np.eye(n)), lap.toarray())
    True
    >>> np.array_equal(lap.tosparse().toarray(), lap.toarray())
    True
    >>> lap.eigenvalues()
    array([-7., -7., -4., -3., -3.,  0.])
    >>> eigvals = eigvalsh(lap.toarray().astype(np.float64))
    >>> np.allclose(lap.eigenvalues(), eigvals)
    True
    >>> np.allclose(lap.toarray() @ lap.eigenvectors(),
    ...             lap.eigenvectors() @ np.diag(lap.eigenvalues()))
    True

    and with ``'neumann'``

    >>> lap = LaplacianNd(grid_shape, boundary_conditions='neumann')
    >>> lap.tosparse()
    <Compressed Sparse Row sparse array of dtype 'int8'
        with 20 stored elements and shape (6, 6)>
    >>> lap.toarray()
    array([[-2,  1,  0,  1,  0,  0],
           [ 1, -3,  1,  0,  1,  0],
           [ 0,  1, -2,  0,  0,  1],
           [ 1,  0,  0, -2,  1,  0],
           [ 0,  1,  0,  1, -3,  1],
           [ 0,  0,  1,  0,  1, -2]], dtype=int8)
    >>> np.array_equal(lap.matmat(np.eye(n)), lap.toarray())
    True
    >>> np.array_equal(lap.tosparse().toarray(), lap.toarray())
    True
    >>> lap.eigenvalues()
    array([-5., -3., -3., -2., -1.,  0.])
    >>> eigvals = eigvalsh(lap.toarray().astype(np.float64))
    >>> np.allclose(lap.eigenvalues(), eigvals)
    True
    >>> np.allclose(lap.toarray() @ lap.eigenvectors(),
    ...             lap.eigenvectors() @ np.diag(lap.eigenvalues()))
    True

    neumann)boundary_conditionsdtypec                    |dvrt        d|d      || _        || _        t        j                  |      }t
        |   |||f       y )N)	dirichletr	   periodiczUnknown value zv is given for 'boundary_conditions' parameter. The valid options are 'dirichlet', 'periodic', and 'neumann' (default).)r   shape)
ValueError
grid_shaper
   npprodsuper__init__)selfr   r
   r   N	__class__s        ]/var/www/html/venv/lib/python3.12/site-packages/scipy/sparse/linalg/_special_sparse_arrays.pyr   zLaplacianNd.__init__   se     &JJ !4 7 8D D  %#6 GGJuQF3    c           
      t   | j                   }|+t        j                  |      }t        j                  |      }nUt	        |t        t        j                  |      |z              }t        j                  |      }t        j                  |      }t        ||      D ]  \  }}| j                  dk(  r<|dt        j                  t        j                  |dz   z  d|dz   z  z        dz  z  z  }Q| j                  dk(  r6|dt        j                  t        j                  |z  d|z  z        dz  z  z  }|dt        j                  t        j                  t        j                  |dz   dz        z  |z        dz  z  z  } |j                         }t        j                  |      }	||	   }
||
| d }
|	| d }	|
|	fS )zCompute `m` largest eigenvalues in each of the ``N`` directions,
        i.e., up to ``m * N`` total, order them and return `m` largest.
        Nr         r	   )r   r   indiceszerosmintuple	ones_likezipr
   sinpifloorravelargsort)r   mr   r   Leiggrid_shape_minjn
Leig_ravelindeigenvaluess              r   _eigenvalue_orderingz LaplacianNd._eigenvalue_ordering  s    __
9jj,G88J'D !&r||J'?!'C!DFNjj0G88N+D, 	LDAq'';6RVVBEEQUOqAE{$CDIII))Y6RVVBEEAIQ$78A===RVVBEEBHHa!eq[,A$AA$EF!KKK	L ZZ\
jj$ o=%qbc*Kqbc(CCr   c                 .    | j                  |      \  }}|S )a  Return the requested number of eigenvalues.
        
        Parameters
        ----------
        m : int, optional
            The positive number of smallest eigenvalues to return.
            If not provided, then all eigenvalues will be returned.
            
        Returns
        -------
        eigenvalues : float array
            The requested `m` smallest or all eigenvalues, in ascending order.
        )r2   )r   r*   r1   _s       r   r1   zLaplacianNd.eigenvalues%  s     2215Qr   c                 L   | j                   dk(  rht        j                  t        j                  |      dz   z  |dz   z  }t        j                  d|dz   z        t        j
                  ||dz   z        z  }nf| j                   dk(  ret        j                  t        j                  |      dz   z  |z  }t        j                  |dk(  rdnd|z        t        j                  ||z        z  }n|dk(  r/t        j                  d|z        t        j                  |      z  }n|dz   |k(  r=|dz  dk(  r5t        j                  d|z        t        j                  dd	g|dz        z  }nydt        j                  z  t        j                  |      dz   z  |z  }t        j                  d|z        t        j                  |t        j                  |dz   dz        z        z  }d
|t        j                  |      t        j                  t        j                        j                  k  <   |S )zjReturn 1 eigenvector in 1d with index `j`
        and number of grid points `n` where ``j < n``. 
        r   r   g       @      ?r	         ?r   r   g        )r
   r   r&   arangesqrtr%   cosonestiler'   absfinfofloat64eps)r   r-   r.   ievs        r   _ev1dzLaplacianNd._ev1d6  s    ##{21)*a!e4Aq2v'"&&a!e*==B%%21+,q0AQ"B!34rvva!e}DBAvWWR!V_rwwqz1Q!A
WWR!V_rww2w1'==J"))A,"459WWR!V_rvva"((AEQ;2G.G'HH 57266":,0001	r   c                    t        || j                        D cg c]  \  }}| j                  ||       }}}|d   }|dd D ]  }t        j                  ||d      } t        j
                  |      j                         S c c}}w )z{Return 1 eigenvector in Nd with multi-index `j`
        as a tensor product of the corresponding 1d eigenvectors. 
        r   r   N)axes)r$   r   rD   r   	tensordotasarrayr(   )r   kr-   r.   phiresults         r   _one_evezLaplacianNd._one_eveM  s     -04??,CDDAqtzz!QDDQqr7 	7C\\&#A6F	7zz&!''))	 Es   Bc                    | j                  |      \  }}|| j                  }n?t        | j                  t        t	        j
                  | j                        |z              }t	        j                  ||      }t        | D cg c]  }t        |       }}|D cg c]  }| j                  |       }}t	        j                  |      S c c}w c c}w )a  Return the requested number of eigenvectors for ordered eigenvalues.
        
        Parameters
        ----------
        m : int, optional
            The positive number of eigenvectors to return. If not provided,
            then all eigenvectors will be returned.
            
        Returns
        -------
        eigenvectors : float array
            An array with columns made of the requested `m` or all eigenvectors.
            The columns are ordered according to the `m` ordered eigenvalues. 
        )
r2   r   r!   r"   r   r#   unravel_indexr$   rL   column_stack)	r   r*   r4   r0   r,   	N_indicesxrI   eigenvectors_lists	            r   eigenvectorszLaplacianNd.eigenvectorsW  s     **1-39!__N  %bll4??&Ca&G HJN $$S.9	'*I7!U1X7	77@A!T]]1-AA011 8As   C
Cc           
         | j                   }t        j                  |      }t        j                  ||gt        j                        }t        j
                  |      }t        j
                  |      }t        |      D ]  \  }}d|dd dt        j                  d|d|d|f         dd dt        j                  d|d|dz
  d|f         dd dt        j                  d|d|d|dz
  f         dd | j                  dk(  rd|d	<   d||dz
  |dz
  f<   nF| j                  d
k(  r7|dkD  r%|d|dz
  fxx   dz  cc<   ||dz
  dfxx   dz  cc<   n|d	xx   dz  cc<   |}|dkD  rTt        j                  |d|       }	t        d|	      D ]-  }
|d|d|f   ||
|z  |
dz   |z  |
|z  |
dz   |z  f<   ||z  }/ |d|d|f   |d|d|f<   t        t        j                  ||dz   d             }	d|d|d|f<   t        |	      D cg c]  }| }}|d|d|f   |j                  ||	||	f      dd|dd|f<   ||z  } |j                  | j                        S c c}w )z
        Converts the Laplacian data to a dense array.

        Returns
        -------
        L : ndarray
            The shape is ``(N, N)`` where ``N = np.prod(grid_shape)``.

        r   r   Nzii->ir   r	   r8   r   r   r   )r   r   r   r    int8
empty_like	enumerateeinsumr
   rangeintreshapeastyper   )r   r   r.   LL_iLtempr0   dimnew_dimtilesr-   rQ   idxs                r   toarrayzLaplacianNd.toarrayr  s    __
GGJHHaV277+mmAa !*- +	HCCF 68BIIgs4C4#:/2;<BIIgs9S1W9ae#345a8;<BIIgs1S5)C!G)#345a8''94D	(*C!GS1W$%))Z7737
Oq(Oa
Oq(OINI GQw
4C 01q% #A<?dsd
OC#qsCi3!Sy89sNG#
 ),HWHhwh,>(?E(7(HWH$%
3q56 234E&'C(7("##El+1+C+ %*(7(HWH*<$= KK%%! S!S."
 HAW+	Z xx

## ,s   		I c           	         t        | j                        }t        j                  | j                        }t	        ||ft        j
                        }t        |      D ]r  }| j                  |   }t        j                  d|gt        j
                        }|dddfxx   dz  cc<   | j                  dk(  r
d|d<   d|d	<   t	        |g d
f||ft        j
                        }| j                  dk(  rQt	        ||ft        j
                        }|j                  dg| dz          |j                  dg|dz
         ||z  }t        |      D ]4  }	t        t        | j                  |	   t        j
                        |      }6 t        |dz   |      D ]4  }	t        |t        | j                  |	   t        j
                              }6 ||z  }u |j                  | j                        S )a)  
        Constructs a sparse array from the Laplacian data. The returned sparse
        array format is dependent on the selected boundary conditions.

        Returns
        -------
        L : scipy.sparse.sparray
            The shape is ``(N, N)`` where ``N = np.prod(grid_shape)``.

        rU      r   NrV   r	   r8   r   r   )r   r8   r8   r   r   r   r   r   )rI   )lenr   r   r   r   rX   r\   r<   r
   setdiagr   r   r_   r   )
r   r   pr`   rB   rc   datara   tr-   s
             r   tosparsezLaplacianNd.tosparse  s     GGDOO$q!fBGG,q 	A//!$C77As82773DAJ"J''94T
 UT:.sCj"$''C '':5sCj8		1##a	(		1#Q	'q1X H3tq1A3GH1q5!_ H3DOOA$6bgg FGHHA/	0 xx

##r   c           	         | j                   }t        |      }|j                  |dz         }d|z  |z  }t        |      D ]!  }|t	        j
                  |d|      z  }|t	        j
                  |d|      z  }| j                  dv sI|t        d       f|z  dz   t        d       f||z
  dz
  z  z   xx   t	        j
                  |d|      t        d       f|z  dz   t        d       f||z
  dz
  z  z      z  cc<   |t        d       f|z  dz   t        d       f||z
  dz
  z  z   xx   t	        j
                  |d|      t        d       f|z  dz   t        d       f||z
  dz
  z  z      z  cc<   | j                  dk(  s>|t        d       f|z  dz   t        d       f||z
  dz
  z  z   xx   t	        j
                  |d	|      t        d       f|z  dz   t        d       f||z
  dz
  z  z      z  cc<   |t        d       f|z  dz   t        d       f||z
  dz
  z  z   xx   t	        j
                  |d	|      t        d       f|z  dz   t        d       f||z
  dz
  z  z      z  cc<   $ |j                  d|j                  d         S )
N)r8   rV   r   )axisr8   )r	   r   )r   r	   r   )	r   rm   r^   r\   r   rollr
   slicer   )r   rQ   r   r   XYrB   s          r   _matveczLaplacianNd._matvec  s   __

OIIj5()FQJq 	AAA&&ABQ''A''+CC5;."T)U4[NAaCE,BB wwq!!,4[NQ&-t!A#a%0HH  4[NQ&.%+1Q3q51IIWWQ+4[NQ&.%+1Q3q51II  ++y8t*T1U4[Nac!e4LLAA.t*T1U4[Nac!e4LL 
 t*U2eDk^qs1u5MMAA.t*U2eDk^qs1u5MM )	4 yyQWWR[))r   c                 $    | j                  |      S Nry   r   rQ   s     r   _matmatzLaplacianNd._matmat  s    ||Ar   c                     | S r{    r   s    r   _adjointzLaplacianNd._adjoint      r   c                     | S r{   r   r   s    r   
_transposezLaplacianNd._transpose  r   r   r{   )__name__
__module____qualname____doc__r   rX   r   r2   r1   rD   rL   rS   rg   rr   ry   r~   r   r   __classcell__r   s   @r   r   r   
   sU    hV &/ww4" >".*26>$@'$R*Br   c                   l     e Zd ZdZej
                  f fd	ZddZd Zd Z	d Z
d Zd Zd	 Zd
 Z xZS )Sakuraia  
    Construct a Sakurai matrix in various formats and its eigenvalues.

    Constructs the "Sakurai" matrix motivated by reference [1]_:
    square real symmetric positive definite and 5-diagonal
    with the main diagonal ``[5, 6, 6, ..., 6, 6, 5], the ``+1`` and ``-1``
    diagonals filled with ``-4``, and the ``+2`` and ``-2`` diagonals
    made of ``1``. Its eigenvalues are analytically known to be
    ``16. * np.power(np.cos(0.5 * k * np.pi / (n + 1)), 4)``.
    The matrix gets ill-conditioned with its size growing.
    It is useful for testing and benchmarking sparse eigenvalue solvers
    especially those taking advantage of its banded 5-diagonal structure.
    See the notes below for details.

    Parameters
    ----------
    n : int
        The size of the matrix.
    dtype : dtype
        Numerical type of the array. Default is ``np.int8``.

    Methods
    -------
    toarray()
        Construct a dense array from Laplacian data
    tosparse()
        Construct a sparse array from Laplacian data
    tobanded()
        The Sakurai matrix in the format for banded symmetric matrices,
        i.e., (3, n) ndarray with 3 upper diagonals
        placing the main diagonal at the bottom.
    eigenvalues
        All eigenvalues of the Sakurai matrix ordered ascending.

    Notes
    -----
    Reference [1]_ introduces a generalized eigenproblem for the matrix pair
    `A` and `B` where `A` is the identity so we turn it into an eigenproblem
    just for the matrix `B` that this function outputs in various formats
    together with its eigenvalues.
    
    .. versionadded:: 1.12.0

    References
    ----------
    .. [1] T. Sakurai, H. Tadano, Y. Inadomi, and U. Nagashima,
       "A moment-based method for large-scale generalized
       eigenvalue problems",
       Appl. Num. Anal. Comp. Math. Vol. 1 No. 2 (2004).

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.sparse.linalg._special_sparse_arrays import Sakurai
    >>> from scipy.linalg import eig_banded
    >>> n = 6
    >>> sak = Sakurai(n)

    Since all matrix entries are small integers, ``'int8'`` is
    the default dtype for storing matrix representations.

    >>> sak.toarray()
    array([[ 5, -4,  1,  0,  0,  0],
           [-4,  6, -4,  1,  0,  0],
           [ 1, -4,  6, -4,  1,  0],
           [ 0,  1, -4,  6, -4,  1],
           [ 0,  0,  1, -4,  6, -4],
           [ 0,  0,  0,  1, -4,  5]], dtype=int8)
    >>> sak.tobanded()
    array([[ 1,  1,  1,  1,  1,  1],
           [-4, -4, -4, -4, -4, -4],
           [ 5,  6,  6,  6,  6,  5]], dtype=int8)
    >>> sak.tosparse()
    <DIAgonal sparse array of dtype 'int8'
        with 24 stored elements (5 diagonals) and shape (6, 6)>
    >>> np.array_equal(sak.dot(np.eye(n)), sak.tosparse().toarray())
    True
    >>> sak.eigenvalues()
    array([0.03922866, 0.56703972, 2.41789479, 5.97822974,
           10.54287655, 14.45473055])
    >>> sak.eigenvalues(2)
    array([0.03922866, 0.56703972])

    The banded form can be used in scipy functions for banded matrices, e.g.,

    >>> e = eig_banded(sak.tobanded(), eigvals_only=True)
    >>> np.allclose(sak.eigenvalues, e, atol= n * n * n * np.finfo(float).eps)
    True

    c                 J    || _         || _        ||f}t        |   ||       y r{   )r.   r   r   r   )r   r.   r   r   r   s       r   r   zSakurai.__init__a  s)    
A&r   c           
      J   || j                   }t        j                  | j                   dz   |z
  | j                   dz         }t        j                  dt        j                  t        j
                  d|z  t        j                  z  | j                   dz   z        d      z        S )a  Return the requested number of eigenvalues.
        
        Parameters
        ----------
        m : int, optional
            The positive number of smallest eigenvalues to return.
            If not provided, then all eigenvalues will be returned.
            
        Returns
        -------
        eigenvalues : `np.float64` array
            The requested `m` smallest or all eigenvalues, in ascending order.
        r   g      0@r7      )r.   r   r9   flippowerr;   r&   )r   r*   rI   s      r   r1   zSakurai.eigenvaluesg  sw     9AIIdffqj!mTVVaZ0wwsRXXbffS1Wruu_
-K&LaPPQQr   c                    t         j                  ddt        j                  | j                  dz
  | j                        z  df   }dt        j                  | j                  | j                        z  }t        j                  | j                  | j                        }t        j
                  |||g      j                  | j                        S )zA
        Construct the Sakurai matrix as a banded array.
              r   rU   r   )r   r_r<   r.   r   arrayr_   )r   d0d1d2s       r   tobandedzSakurai.tobandedz  s     UU1a"''$&&1*DJJ??BC"''$&&

33WWTVV4::.xxR%,,TZZ88r   c                     ddl m} | j                         } ||d   |d   |d   |d   |d   gg d| j                  | j                        S )zB
        Construct the Sakurai matrix is a sparse format.
        r   )spdiagsr   r   )rV   r8   r   r   r   )scipy.sparser   r   r.   )r   r   ds      r   rr   zSakurai.tosparse  sR     	)MMO !adAaD!A$!57Hvvtvv' 	'r   c                 >    | j                         j                         S r{   rr   rg   r   s    r   rg   zSakurai.toarray      }}&&((r   c                 L   |j                  | j                  d      }t        j                  |j                  | j                        }t        j
                  ||      }d|dddf   z  d|dddf   z  z
  |dddf   z   |dddf<   d|dddf   z  d|d	ddf   z  z
  |d
ddf   z   |dddf<   d|ddddf   z  d|dd	ddf   |ddddf   z   z  z
  t        j                  |dd
ddf   d      z   t        j                  |ddddf   d      z   |ddddf<   |S )z
        Construct matrix-free callable banded-matrix-vector multiplication by
        the Sakurai matrix without constructing or storing the matrix itself
        using the knowledge of its entries and the 5-diagonal format.
        r8   rU   r   r   Nr   r   r   rV   r   )rj   rW   ri   ))r   r   rW   )r^   r.   r   promote_typesr   
zeros_likepad)r   rQ   result_dtypesxs       r   ry   zSakurai._matvec  s;    IIdffb!''<]]1L1qAw;Qq!tW,qAw61a4"a%L1qQx</!BE(:2q5	AaeQhK!q"ay1QRU8/C*DDq"ay*:;<qQx)9:;1b5!8 	r   c                 $    | j                  |      S )z
        Construct matrix-free callable matrix-matrix multiplication by
        the Sakurai matrix without constructing or storing the matrix itself
        by reusing the ``_matvec(x)`` that supports both 1D and 2D arrays ``x``.
        r|   r}   s     r   r~   zSakurai._matmat       ||Ar   c                     | S r{   r   r   s    r   r   zSakurai._adjoint  r   r   c                     | S r{   r   r   s    r   r   zSakurai._transpose  r   r   r{   )r   r   r   r   r   rX   r   r1   r   rr   rg   ry   r~   r   r   r   r   s   @r   r   r     sA    Yt !# 'R&9	') r   r   c                   j     e Zd ZdZej
                  f fd	Zd Zd Zd Z	d Z
d Zd Zd	 Zd
 Z xZS )MikotaMas  
    Construct a mass matrix in various formats of Mikota pair.

    The mass matrix `M` is square real diagonal
    positive definite with entries that are reciprocal to integers.

    Parameters
    ----------
    shape : tuple of int
        The shape of the matrix.
    dtype : dtype
        Numerical type of the array. Default is ``np.float64``.

    Methods
    -------
    toarray()
        Construct a dense array from Mikota data
    tosparse()
        Construct a sparse array from Mikota data
    tobanded()
        The format for banded symmetric matrices,
        i.e., (1, n) ndarray with the main diagonal.
    c                 B    || _         || _        t        |   ||       y r{   )r   r   r   r   )r   r   r   r   s      r   r   zMikotaM.__init__  s     

&r   c                     dt        j                  d| j                  d   dz         z  j                  | j                        S )Nr6   r   r   )r   r9   r   r_   r   r   s    r   _diagzMikotaM._diag  s6     RYYq$**Q-!"344<<TZZHHr   c                 "    | j                         S r{   )r   r   s    r   r   zMikotaM.tobanded  s    zz|r   c                 n    ddl m}  || j                         gdg| j                  | j                        S )Nr   diagsrl   )r   r   r   r   r   r   r   s     r   rr   zMikotaM.tosparse  s(    &djjl^aS

$**MMr   c                 z    t        j                  | j                               j                  | j                        S r{   )r   diagr   r_   r   r   s    r   rg   zMikotaM.toarray  s&    wwtzz|$++DJJ77r   c                     |j                  | j                  d   d      }| j                         ddt        j                  f   |z  S )z
        Construct matrix-free callable banded-matrix-vector multiplication by
        the Mikota mass matrix without constructing or storing the matrix itself
        using the knowledge of its entries and the diagonal format.
        r   r8   N)r^   r   r   r   newaxisr}   s     r   ry   zMikotaM._matvec  s:     IIdjjmR(zz|ArzzM*Q..r   c                 $    | j                  |      S )z
        Construct matrix-free callable matrix-matrix multiplication by
        the Mikota mass matrix without constructing or storing the matrix itself
        by reusing the ``_matvec(x)`` that supports both 1D and 2D arrays ``x``.
        r|   r}   s     r   r~   zMikotaM._matmat  r   r   c                     | S r{   r   r   s    r   r   zMikotaM._adjoint  r   r   c                     | S r{   r   r   s    r   r   zMikotaM._transpose  r   r   )r   r   r   r   r   r@   r   r   r   rr   rg   ry   r~   r   r   r   r   s   @r   r   r     s@    . %'JJ '
I
N8/r   r   c                   d     e Zd ZdZej
                  f fd	Zd Zd Zd Z	d Z
d Zd Zd	 Z xZS )
MikotaKa  
    Construct a stiffness matrix in various formats of Mikota pair.

    The stiffness matrix `K` is square real tri-diagonal symmetric
    positive definite with integer entries. 

    Parameters
    ----------
    shape : tuple of int
        The shape of the matrix.
    dtype : dtype
        Numerical type of the array. Default is ``np.int32``.

    Methods
    -------
    toarray()
        Construct a dense array from Mikota data
    tosparse()
        Construct a sparse array from Mikota data
    tobanded()
        The format for banded symmetric matrices,
        i.e., (2, n) ndarray with 2 upper diagonals
        placing the main diagonal at the bottom.
    c                     || _         || _        t        |   ||       |d   }t	        j
                  d|z  dz
  dd| j                        | _        t	        j
                  |dz
  dd| j                         | _        y )Nr   r   r   rV   rU   r8   )r   r   r   r   r   r9   _diag0_diag1)r   r   r   r.   r   s       r   r   zMikotaK.__init__  sn    

& !HiiA	1b

C		!a%BdjjAAr   c                     t        j                  t        j                  | j                  dd      | j                  g      S )Nrj   constant)r   r   r   r   r   r   s    r   r   zMikotaK.tobanded  s+    xxVZ@$++NOOr   c                     ddl m}  || j                  | j                  | j                  gg d| j                  | j
                        S )Nr   r   rk   rl   )r   r   r   r   r   r   r   s     r   rr   zMikotaK.tosparse  s6    &dkk4;;<j::TZZ9 	9r   c                 >    | j                         j                         S r{   r   r   s    r   rg   zMikotaK.toarray  r   r   c                 "   |j                  | j                  d   d      }t        j                  |j                  | j                        }t        j
                  ||      }| j                  }| j                  }|d   |dddf   z  |d   |dddf   z  z   |dddf<   |d   |dddf   z  |d   |dddf   z  z   |dddf<   |dddf   |ddddf   z  |dddf   |ddddf   z  z   |dddf   |ddddf   z  z   |ddddf<   |S )z
        Construct matrix-free callable banded-matrix-vector multiplication by
        the Mikota stiffness matrix without constructing or storing the matrix
        itself using the knowledge of its entries and the 3-diagonal format.
        r   r8   rU   Nr   rV   r   )r^   r   r   r   r   r   r   r   )r   rQ   r   kxr   r   s         r   ry   zMikotaK._matvec"  s9    IIdjjmR(''<]]1L1[[[[a51QT7?RUQq!tW_41a4rFQr1uX%22q5(992q5	3B39$B$'
2QUD[/AaeQhK78QRX,12q5121b5!8 	r   c                 $    | j                  |      S )z
        Construct matrix-free callable matrix-matrix multiplication by
        the Stiffness mass matrix without constructing or storing the matrix itself
        by reusing the ``_matvec(x)`` that supports both 1D and 2D arrays ``x``.
        r|   r}   s     r   r~   zMikotaK._matmat4  r   r   c                     | S r{   r   r   s    r   r   zMikotaK._adjoint<  r   r   c                     | S r{   r   r   s    r   r   zMikotaK._transpose?  r   r   )r   r   r   r   r   int32r   r   rr   rg   ry   r~   r   r   r   r   s   @r   r   r     s;    0 %'HH BP9
)$r   r   c                   6    e Zd ZdZej
                  fdZddZy)
MikotaPaira  
    Construct the Mikota pair of matrices in various formats and
    eigenvalues of the generalized eigenproblem with them.

    The Mikota pair of matrices [1, 2]_ models a vibration problem
    of a linear mass-spring system with the ends attached where
    the stiffness of the springs and the masses increase along
    the system length such that vibration frequencies are subsequent
    integers 1, 2, ..., `n` where `n` is the number of the masses. Thus,
    eigenvalues of the generalized eigenvalue problem for
    the matrix pair `K` and `M` where `K` is the system stiffness matrix
    and `M` is the system mass matrix are the squares of the integers,
    i.e., 1, 4, 9, ..., ``n * n``.

    The stiffness matrix `K` is square real tri-diagonal symmetric
    positive definite. The mass matrix `M` is diagonal with diagonal
    entries 1, 1/2, 1/3, ...., ``1/n``. Both matrices get
    ill-conditioned with `n` growing.

    Parameters
    ----------
    n : int
        The size of the matrices of the Mikota pair.
    dtype : dtype
        Numerical type of the array. Default is ``np.float64``.

    Attributes
    ----------
    eigenvalues : 1D ndarray, ``np.uint64``
        All eigenvalues of the Mikota pair ordered ascending.

    Methods
    -------
    MikotaK()
        A `LinearOperator` custom object for the stiffness matrix.
    MikotaM()
        A `LinearOperator` custom object for the mass matrix.
    
    .. versionadded:: 1.12.0

    References
    ----------
    .. [1] J. Mikota, "Frequency tuning of chain structure multibody oscillators
       to place the natural frequencies at omega1 and N-1 integer multiples
       omega2,..., omegaN", Z. Angew. Math. Mech. 81 (2001), S2, S201-S202.
       Appl. Num. Anal. Comp. Math. Vol. 1 No. 2 (2004).
    .. [2] Peter C. Muller and Metin Gurgoze,
       "Natural frequencies of a multi-degree-of-freedom vibration system",
       Proc. Appl. Math. Mech. 6, 319-320 (2006).
       http://dx.doi.org/10.1002/pamm.200610141.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.sparse.linalg._special_sparse_arrays import MikotaPair
    >>> n = 6
    >>> mik = MikotaPair(n)
    >>> mik_k = mik.k
    >>> mik_m = mik.m
    >>> mik_k.toarray()
    array([[11., -5.,  0.,  0.,  0.,  0.],
           [-5.,  9., -4.,  0.,  0.,  0.],
           [ 0., -4.,  7., -3.,  0.,  0.],
           [ 0.,  0., -3.,  5., -2.,  0.],
           [ 0.,  0.,  0., -2.,  3., -1.],
           [ 0.,  0.,  0.,  0., -1.,  1.]])
    >>> mik_k.tobanded()
    array([[ 0., -5., -4., -3., -2., -1.],
           [11.,  9.,  7.,  5.,  3.,  1.]])
    >>> mik_m.tobanded()
    array([1.        , 0.5       , 0.33333333, 0.25      , 0.2       ,
        0.16666667])
    >>> mik_k.tosparse()
    <DIAgonal sparse array of dtype 'float64'
        with 20 stored elements (3 diagonals) and shape (6, 6)>
    >>> mik_m.tosparse()
    <DIAgonal sparse array of dtype 'float64'
        with 6 stored elements (1 diagonals) and shape (6, 6)>
    >>> np.array_equal(mik_k(np.eye(n)), mik_k.toarray())
    True
    >>> np.array_equal(mik_m(np.eye(n)), mik_m.toarray())
    True
    >>> mik.eigenvalues()
    array([ 1,  4,  9, 16, 25, 36])  
    >>> mik.eigenvalues(2)
    array([ 1,  4])

    c                     || _         || _        ||f| _        t        | j                  | j                        | _        t        | j                  | j                        | _        y r{   )r.   r   r   r   r*   r   rI   )r   r.   r   s      r   r   zMikotaPair.__init__  sG    
V
TZZ0TZZ0r   Nc                 z    || j                   }t        j                  d|dz   t        j                        }||z  S )a  Return the requested number of eigenvalues.
        
        Parameters
        ----------
        m : int, optional
            The positive number of smallest eigenvalues to return.
            If not provided, then all eigenvalues will be returned.
            
        Returns
        -------
        eigenvalues : `np.uint64` array
            The requested `m` smallest or all eigenvalues, in ascending order.
        r   rU   )r.   r   r9   uint64)r   r*   arange_plus1s      r   r1   zMikotaPair.eigenvalues  s7     9AyyAE;l**r   r{   )r   r   r   r   r   r@   r   r1   r   r   r   r   r   C  s    Wp !#

 1+r   r   )numpyr   scipy.sparse.linalgr   r   r   r   r   __all__r   r   r   r   r   r   r   r   <module>r      s`     . - -/
y. yxgn gTAn AHLn L^q+ q+r   