
    g                     d    d Z ddlZddlmZ ddlmZ ddlmZ ddlm	Z
 ddlmZmZ dgZd Zd
d	Zy)zSparse matrix norms.

    N)issparse)svds)convert_pydata_sparse_to_scipy)sqrtabsnormc                 ~    t         j                  j                  |       }t        j                  j                  |      S )N)sp_sputils_todatanplinalgr   )xdatas     L/var/www/html/venv/lib/python3.12/site-packages/scipy/sparse/linalg/_norm.py_sparse_frobenius_normr      s)    ;;q!D99>>$    c                 4   t        | d      } t        |       st        d      ||dv rt        |       S | j	                         } |t        t        | j                              }n1t        |t
              s!d}	 t        |      }||k7  rt        |      |f}| j                  }t        |      dk(  rk|\  }}| |cxk  r|k  rn n| |cxk  r|k  sn d|d	| j                  }	t        |	      ||z  ||z  k(  rt        d
      |dk(  rt        | dd      \  }
}}
|d   S |dk(  rt        |dk(  r)t        |       j!                  |      j#                         S |t$        j&                  k(  r)t        |       j!                  |      j#                         S |dk(  r)t        |       j!                  |      j)                         S |t$        j&                   k(  r)t        |       j!                  |      j)                         S |dv rt        |       S t        d      t        |      dk(  r|\  }| |cxk  r|k  sn d|d	| j                  }	t        |	      |t$        j&                  k(  rt        |       j#                  |      }n|t$        j&                   k(  rt        |       j)                  |      }n|dk(  r| dk7  j!                  |      }n|dk(  rt        |       j!                  |      }n|dv r4t+        t        |       j-                  d      j!                  |            }nG	 |dz    t%        j,                  t        |       j-                  |      j!                  |      d|z        }t/        |d      r|j1                         j3                         S t/        |d      r|j4                  j3                         S |j3                         S t        d      # t        $ r}t        |      |d}~ww xY w# t        $ r}t        d      |d}~ww xY w)a
  
    Norm of a sparse matrix

    This function is able to return one of seven different matrix norms,
    depending on the value of the ``ord`` parameter.

    Parameters
    ----------
    x : a sparse array
        Input sparse array.
    ord : {non-zero int, inf, -inf, 'fro'}, optional
        Order of the norm (see table under ``Notes``). inf means numpy's
        `inf` object.
    axis : {int, 2-tuple of ints, None}, optional
        If `axis` is an integer, it specifies the axis of `x` along which to
        compute the vector norms.  If `axis` is a 2-tuple, it specifies the
        axes that hold 2-D matrices, and the matrix norms of these matrices
        are computed.  If `axis` is None then either a vector norm (when `x`
        is 1-D) or a matrix norm (when `x` is 2-D) is returned.

    Returns
    -------
    n : float or ndarray

    Notes
    -----
    Some of the ord are not implemented because some associated functions like,
    _multi_svd_norm, are not yet available for sparse array.

    This docstring is modified based on numpy.linalg.norm.
    https://github.com/numpy/numpy/blob/main/numpy/linalg/linalg.py

    The following norms can be calculated:

    =====  ============================
    ord    norm for sparse arrays
    =====  ============================
    None   Frobenius norm
    'fro'  Frobenius norm
    inf    max(sum(abs(x), axis=1))
    -inf   min(sum(abs(x), axis=1))
    0      abs(x).sum(axis=axis)
    1      max(sum(abs(x), axis=0))
    -1     min(sum(abs(x), axis=0))
    2      Spectral norm (the largest singular value)
    -2     Not implemented
    other  Not implemented
    =====  ============================

    The Frobenius norm is given by [1]_:

        :math:`||A||_F = [\sum_{i,j} abs(a_{i,j})^2]^{1/2}`

    References
    ----------
    .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*,
        Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15

    Examples
    --------
    >>> from scipy.sparse import csr_array, diags_array
    >>> import numpy as np
    >>> from scipy.sparse.linalg import norm
    >>> a = np.arange(9) - 4
    >>> a
    array([-4, -3, -2, -1, 0, 1, 2, 3, 4])
    >>> b = a.reshape((3, 3))
    >>> b
    array([[-4, -3, -2],
           [-1, 0, 1],
           [ 2, 3, 4]])

    >>> b = csr_array(b)
    >>> norm(b)
    7.745966692414834
    >>> norm(b, 'fro')
    7.745966692414834
    >>> norm(b, np.inf)
    9
    >>> norm(b, -np.inf)
    2
    >>> norm(b, 1)
    7
    >>> norm(b, -1)
    6

    The matrix 2-norm or the spectral norm is the largest singular
    value, computed approximately and with limitations.

    >>> b = diags_array([-1, 1], [0, 1], shape=(9, 10))
    >>> norm(b, 2)
    1.9753...
    csr)target_formatz*input is not sparse. use numpy.linalg.normN)Nfrofz6'axis' must be None, an integer or a tuple of integers   zInvalid axis z for an array with shape zDuplicate axes given.   lobpcg)ksolverr   )axis)Nr   r   z Invalid norm order for matrices.)r   NzInvalid norm order for vectors.toarrayAz&Improper number of dimensions to norm.)r   r   	TypeErrorr   tocsrtuplerangendim
isinstanceintlenshape
ValueErrorr   NotImplementedErrorr   summaxr   infminr   powerhasattrr!   ravelr"   )r   ordr   msgint_axisendrow_axiscol_axismessage_saMs                 r   r   r      s   | 	'q>AA;DEE |11%a(( 	
	A|U166]#e$F	(4yH 8C. {	
B
4yA~!(x$"$")=2)=%dX-FqwwkRGW%%b=HrM)455!81(3GAq!Q4KBY%%AXq6::8:,0022BFF]q6::8:,0022BYq6::8:,0022RVVG^q6::8:,0022&&)!,,?@@	Taq2%dX-FqwwkRGW%%"&&=A


"ARVVG^A


"AAXa!$AAXA


"AISV\\!_((a(01AKa Qc*..A.6C@A1i 99;$$&&Q_3399;779ABBA  	(C.a'	(l  K !BCJKs0   9O  /O=  	O:)O55O:=	PPP)NN)__doc__numpyr   scipy.sparser   scipy.sparse.linalgr   scipy.sparse._sputilsr   sparser
   r   r   __all__r   r    r   r   <module>rI      s1     ! $ @  ( 
oCr   